Евклид биография сокращенно

Перейти к навигации Перейти к поиску

Евклид
Ευκλείδης
Дата рождения:  III век до н. э. «III век до н. э.» содержит посторонний дефис или другой символ, не допустимый в дате.
В запросе есть пустое условие.

[[Категория:Родившиеся в III век до н. э. году]]

Научная сфера: древнегреческий математик

Евклид или Эвклид, (др.-греч. Ευκλείδης, ок. 300 г. до н. э.) — древнегреческий математик.

Биография[править]

Биографические данные о Евклиде крайне скудны.

К наиболее достоверным сведениям о жизни Евклида принято относить то немногое, что приводится в Комментариях Прокла к первой книге Начал Евклида. Отметив, что «писавшие по истории математики» не довели изложение развития этой науки до времени Евклида, Прокл указывает, что Евклид был старше Платоновского кружка, но моложе Архимеда и Эратосфена и «жил во времена Птолемея I Сотера», «потому что и Архимед, живший при Птолемее Первом, упоминает об Евклиде и, в частности, рассказывает, что Птолемей однажды спросил его, есть ли более короткий путь изучения геометрии, нежели Начала; а тот ответил, что нет царского пути к геометрии»[1]

Дополнительные штрихи к портрету Евклида можно почерпнуть у Паппа и Стобея. Папп сообщает, что Евклид был мягок и любезен со всеми, кто мог хотя в малейшей степени способствовать развитию математических наук, а Стобей передаёт ещё один анекдот о Евклиде. Приступив к изучению геометрии и разобрав первую теорему, один юноша спросил у Евклида: «А какая мне будет выгода от этой науки?» Евклид подозвал раба и сказал: «Дай ему три обола, раз он хочет извлекать прибыль из учёбы».[2]

Некоторые современные авторы трактуют утверждение Прокла – Евклид жил во времена Птолемея I Сотера – в том смысле, что Евклид жил при дворе Птолемея и был основателем Александрийского Мусейона.[3] Следует, однако, отметить, что это представление утвердилось в Европе в XVII веке, средневековые же авторы отождествляли Евклида с учеником Сократа философом Евклидом из Мегар, а арабские авторы называли Тир родиной Евклида и считали, что он жил в Дамаске и издал там Начала Аполлония.[4]

Начала Евклида[править]

Ватиканский манускрипт, т.1, 38v – 39r. Euclid I prop. 47 (теорема Пифагора).

Основное сочинение Евклида называется Начала. Книги с таким же названием, в которых последовательно излагались все основные факты геометрии и теоретической арифметики, составлялись ранее Гиппократом Хиосским, Леонтом и Февдием. Однако Начала Евклида вытеснили все эти сочинения из обихода и в течение более чем двух тысячелетий оставались базовым учебником геометрии. Создавая свой учебник, Евклид включил в него многое из того, что было создано его предшественниками, обработав этот материал и сведя его воедино.

Начала состоят из тринадцати книг. Первая и некоторые другие книги предваряются списком определений. Первой книге предпослан также список постулатов и аксиом. Как правило, постулаты задают базовые построения (напр., «требуется, чтобы через любые две точки можно было провести прямую»), а аксиомы — общие правила вывода при оперировании с величинами (напр., «если две величины равны третьей, они равны между собой»).

В I книге изучаются свойства треугольников и параллелограммов; эту книгу венчает знаменитая теорема Пифагора для прямоугольных треугольников. Книга II, восходящая к пифагорейцам, посвящена так называемой «геометрической алгебре». В III и IV книгах излагается геометрия окружностей, а также вписанных и описанных многоугольников; при работе над этими книгами Евклид мог воспользоваться сочинениями Гиппократа Хиосского. В V книге вводится общая теория пропорций, построенная Евдоксом Книдским, а в VI книге она прилагается к теории подобных фигур. VII–IX книги посвящены теории чисел и восходят к пифагорейцам; автором VIII книги, возможно, был Архит Тарентский. В этих книгах рассматриваются теоремы о пропорциях и геометрических прогрессиях, вводится метод для нахождения наибольшего общего делителя двух чисел (известный ныне как алгоритм Евклида), строится чётные совершенные числа, доказывается бесконечность множества простых чисел. В X книге, представляющей собой самую объёмную и сложную часть Начал, строится классификация иррациональностей; возможно, что её автором является Теэтет Афинский. XI книга содержит основы стереометрии. В XII книге с помощью метода исчерпывания доказываются теоремы об отношениях площадей кругов, а также объёмов пирамид и конусов; автором этой книги по общему признанию является Евдокс Книдский. Наконец, XIII книга посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским.

В дошедших до нас рукописях к этим тринадцати книгам прибавлены ещё две. XIV книга принадлежит александрийцу Гипсиклу (ок. 200 г. до н.э.), а XV книга создана во время жизни Исидора Милетского, строителя храма св. Софии в Константинополе (начало VI в. н. э.).

Начала предоставляют общую основу для последующих геометрических трактатов Архимеда, Аполлония и других античных авторов; доказанные в них предложения считаются общеизвестными. Комментарии к Началам в античности составляли Герон, Порфирий, Папп, Прокл, Симпликий. Сохранился комментарий Прокла к I книге, а также комментарий Паппа к X книге (в арабском переводе). От античных авторов комментаторская традиция переходит к арабам, а потом и в Средневековую Европу.

В создании и развитии науки Нового времени Начала также сыграли важную идейную роль. Они оставались образцом математического трактата, строго и систематически излагающего основные положения той или иной математической науки.

Другие произведения Евклида[править]

Из других сочинений Евклида сохранились:

  • Данные (δεδομένα) — о том, что необходимо, чтобы задать фигуру;
  • О разделении (περὶ διαιρέσεων) — сохранилось частично и только в арабском переводе; дает деление геометрических фигур на части, равные или состоящие между собой в заданном отношении;
  • Явления (φαινόμενα) — приложения сферической геометрии к астрономии;
  • Оптика (ὀπτικά) — о прямолинейном распространении света.

По кратким описаниям известны:

  • Поризмы (πορίσματα) — об условиях, определяющих кривые;
  • Конические сечения (κωνικά);
  • Поверхностные места (τόποι πρὸς ἐπιφανείᾳ) — о свойствах конических сечений;
  • Псевдария (ψευδαρία) — об ошибках в геометрических доказательствах;
  • Начала музыки (κατὰ μουσικὴν στοιχειώσεις).

Евклиду приписываются также:

  • Катоптрика (κατοπτρικά) — теория зеркал; сохранилась обработка Теона Александрийского;
  • Деление канона (κατατομὴ κανόνος) — трактат по математическим основам музыкальной теории, большая часть которого создана Архитом Тарентским. /Пер. А. И. Щетникова опубликован в кн. «Пифагорейская гармония: исследования и тексты». Новосибирск: АНТ, 2005, с. 81-96.

Евклид и античная философия[править]

Йос ван Вассенхове (Юстус из Гента). Евклид, ок. 1474. Урбино

Уже со времён пифагорейцев и Платона арифметика, музыка, геометрия и астрономия (т.наз. «математические» науки) рассматривались в качестве образца систематического мышления и предварительной ступени для изучения философии. Не случайно возникло предание, согласно которому над входом в платоновскую Академию была помещена надпись «Да не войдёт сюда не знающий геометрии».

Геометрические чертежи, на которых при проведении вспомогательных линий неявная истина становится очевидной, служат иллюстрацией для учения о припоминании, развитого Платоном в Меноне и других диалогах. Предложения геометрии потому и называются теоремами, что для постижения их истины требуется воспринимать чертёж не простым чувственным зрением, но «очами разума». Всякий же чертёж к теореме представляет собой идею: мы видим перед собой эту фигуру, а ведём рассуждения и делаем заключения сразу для всех фигур одного с ней вида.

Некоторый «платонизм» Евклида связан также с тем, что в Тимее Платона рассматривается учение о четырёх элементах, которым соответствуют четыре правильных многогранника (тетраэдр — огонь, октаэдр — воздух, икосаэдр — вода, куб — земля), пятый же многогранник, додекаэдр, «достался в удел фигуре вселенной». В связи с этим Начала могут рассматриваться как развёрнутое со всеми необходимыми посылками и связками учение о построении пяти правильных многогранников — так называемых «платоновых тел», завершающееся доказательством того факта, что других правильных тел, кроме этих пяти, не существует.

Для аристотелевского учения о доказательстве, развитого во Второй аналитике, Начала также предоставляют богатый материал. Геометрия в Началах строится как выводная система знаний, в которой все предложения последовательно выводятся одно за другим по цепочке, опирающейся на небольшой набор начальных утверждений, принятых без доказаельства. Согласно Аристотелю, такие начальные утверждения должны иметься, так как цепочка вывода должны где-то начинаться, чтобы не быть бесконечной. Далее, Евклид старается доказывать утверждения общего характера, что тоже соответствует любимому примеру Аристотеля: «если всякому равнобедренному треугольнику присуще иметь углы, в сумме равные двум прямым, то это присуще ему не потому что он равнобедренный, а потому что он треугольник» (An. Post. 85b12).

Литература[править]

Библиография
  • Max Steck. Bibliographia Euclideana. Die Geisteslinien der Tradition in den Editionen der «Elemente» des Euklid (um 365—300). Handschriften, Inkunabeln, Frühdrucke (16.Jahrhundert). Textkritische Editionen des 17.-20. Jahrhunderts. Editionen der Opera minora (16.-20.Jahrhundert). Nachdruck, herausgeg. von Menso Folkerts. Hildesheim: Gerstenberg, 1981.
Современные издания сочинений Евклида

краткая биография Евклида

  1. Родился. Пожил. Умер.
  2. В научной жизни эпохи эллинизма особенно плодотворно развивались отрасли знаний естественного направления: физика, астрономия, землеведение, тесно связанные с математикой и геометрией. К числу самых прославленных эллинистических геометров и математиков относился знаменитый Евклид.

    Биография Евклида известна очень плохо. В молодости он, возможно, обучался в афинской Академии, которая была не только философской, но и математической и астрономической школой (к Академии примыкал Евдокс Книдский). Затем Евклид жил в Александрии при Птолемеях I и II. Так что биография Евклида проходила преимущественно в первой половине III в. до н. э. Живший много веков позднее неоплатоник Прокл рассказывает, что когда Птолемей I спросил Евклида, заглянув в его главный труд, нет ли более короткой дороги к геометрии, то Евклид якобы гордо ответил царю, что науке нет царского пути.

    Евклиду принадлежат такие фундаментальные исследования, как Оптика и Диоптрика. В своей оптике Евклид исходил из пифагорейской теории, согласно которой лучи света прямые линии, простирающиеся от глаза к воспринимаемому предмету.

  3. пееееееееееппппа
07.02.2017 00:04 20112 Статья по теме Николай Лобачевский: ковбой от геометрии

В евклидову геометрию входят планиметрия — раздел геометрии, исследующий фигуры на плоскости, и стереометрия — раздел геометрии, в котором изучаются фигуры в пространстве.

Какие аксиомы и постулаты предложил Евклид?

В «Началах» Евклида содержались следующие утверждения, принимаемые без доказательства:

Постулаты

Требуется, чтобы от каждой точки ко всякой другой точке можно было провести прямую линию.

И чтобы каждую прямую можно было неопределённо продолжить.

И чтобы из любого центра можно было описать окружность любым радиусом.

И чтобы все прямые углы были равны между собой.

И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними внутренние односторонние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше двух прямых.

Статуя Евклида в Оксфордском университетском музее естественной истории. Фото: Commons.wikimedia.org

Аксиомы

Равные одному и тому же равны между собой.

И если к равным прибавим равные, то получим равные.

И если от равных отнимем равные, то получим равные. Статья по теме

«Новые Перельманы». 6 математических загадок, на которых можно мгновенно разбогатеть

И если к неравным прибавим равные, то получим неравные.

И если удвоим равные, то получим равные.

И половины равных равны между собой.

И совмещающие равны.

И целое больше части.

И две прямые не могут заключить пространства.

Что такое «неевклидова геометрия»?

Неевклидова геометрия — это геометрия, которая использует набор аксиом, отличных от аксиом евклидовой геометрии, в частности, не включает постулата о параллельных прямых. Основные открытия геометрических систем, в которых аксиомы Евклида не верны, были сделаны Николаем Лобачевским и Георгом Риманом.

Геометрия Лобачевского строится на основе тех же аксиом, что и евклидова, за исключением только одной аксиомы о параллельных. Согласно аксиоме о параллельных евклидовой геометрии, через точку, не лежащую на данной прямой а, проходит только одна прямая, которая лежит в одной плоскости с прямой а и не пересекает эту прямую. В геометрии Лобачевского принимается, что таких прямых несколько (затем доказывается, что их бесконечно много). Статья по теме Вырастить технаря. Школе нужен новый подход к обучению точным наукам

В геометрии Римана принимается аксиома, что каждая прямая, лежащая в одной плоскости с данной прямой, пересекает эту прямую. Эта аксиома противоречит системе аксиом евклидовой геометрии с исключением аксиомы о параллельных.

Таким образом, отличия евклидовой геометрии от геометрии Лобачевского в том, что порядок точек на прямой является линейным, т. е. подобным порядку в множестве действительных чисел, а отличие евклидовой геометрии от геометрии Римана в том, что порядок точек на прямой является циклическим, т. е. подобным порядку в множестве точек на окружности. Кроме того, в геометриях Евклида и Лобачевского каждая прямая, лежащая в данной плоскости, разделяет эту плоскость на две части; в геометрии Римана прямая не разделяет плоскость на две части, т. е. любые две точки плоскости, не лежащие на данной прямой, можно соединить в этой плоскости непрерывной дугой, не пересекая данную прямую.

*«Начала» (греч. Στοιχεῖα, лат. Elementa) — главный труд Евклида, написанный около 300 г. до н. э. и посвященный систематическому построению геометрии.

Следующий материал

Также вам может быть интересно

  • Что означает «якида»?
  • Хью Лори ответил на вопросы русских зрителей!
  • Что надеть на выпускной? Спроси у Киры Пластининой

Евклид или Эвклид (др.-греч. , от «добрая слава», время расцвета — около 300В года доВ н.В э.)В — древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Биографические сведения об Евклиде крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в 3 в. доВ н.В э.

ЕвклидВ — первый математик Александрийской школы. Его главная работа «Начала» (, в латинизированной формеВ — «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел; в ней он подвёл итог предшествующему развитию Древнегреческой математики и создал фундамент дальнейшего развития математики. Из других сочинений по математике надо отметить «О делении фигур», сохранившееся в арабском переводе, 4 книги «Конические сечения», материал которых вошёл в произведение того же названия Аполлония Пергского, а также «Поризмы», представление о которых можно получить из «Математического собрания» Паппа Александрийского. ЕвклидВ — автор работ по астрономии, оптике, музыке и др.

Биография

К наиболее достоверным сведениям о жизни Евклида принято относить то немногое, что приводится в Комментариях Прокла к первой книге Начал Евклида. Отметив, что «писавшие по истории математики» не довели изложение развития этой науки до времени Евклида, Прокл указывает, что Евклид был старше Платоновского кружка, но моложе Архимеда и Эратосфена и «жил во времена Птолемея I Сотера», «потому что и Архимед, живший при Птолемее Первом, упоминает об Евклиде и, в частности, рассказывает, что Птолемей спросил его, есть ли более короткий путь изучения геометрии, нежели Начала; а тот ответил, что нет царского пути к геометрии».

Дополнительные штрихи к портрету Евклида можно почерпнуть у Паппа и Стобея. Папп сообщает, что Евклид был мягок и любезен со всеми, кто мог хотя бы в малейшей степени способствовать развитию математических наук, а Стобей передаёт ещё один анекдот о Евклиде. Приступив к изучению геометрии и разобрав первую теорему, один юноша спросил у Евклида: «А какая мне будет выгода от этой науки?» Евклид подозвал раба и сказал: «Дай ему три обола, раз он хочет извлекать прибыль из учёбы». Историчность рассказа сомнительна, поскольку аналогичный рассказывают о Платоне.

Некоторые современные авторы трактуют утверждение ПроклаВ — Евклид жил во времена Птолемея I СотераВ — в том смысле, что Евклид жил при дворе Птолемея и был основателем Александрийского Мусейона. Следует, однако, отметить, что это представление утвердилось в Европе в XVII веке, средневековые же авторы отождествляли Евклида с учеником Сократа философом Евклидом из Мегар.

Арабские авторы считали, что Евклид жил в Дамаске и издал там «Начала» Аполлония. Анонимная арабская рукопись XII века сообщаетВ :

Евклид, сын Наукрата, известный под именем «Геометра», учёный старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира…

В целом количество данных о Евклиде настолько скудно, что существует версия (правда, малораспространенная) что речь идет о коллективном псевдониме группы александрийских ученых.

«Начала» Евклида

Основное сочинение Евклида называется Начала. Книги с таким же названием, в которых последовательно излагались все основные факты геометрии и теоретической арифметики, составлялись ранее Гиппократом Хиосским, Леонтом и Февдием. Однако Начала Евклида вытеснили все эти сочинения из обихода и в течение более чем двух тысячелетий оставались базовым учебником геометрии. Создавая свой учебник, Евклид включил в него многое из того, что было создано его предшественниками, обработав этот материал и сведя его воедино.

Начала состоят из тринадцати книг. Первая и некоторые другие книги предваряются списком определений. Первой книге предпослан также список постулатов и аксиом. Как правило, постулаты задают базовые построения (напр., «требуется, чтобы через любые две точки можно было провести прямую»), а аксиомыВ — общие правила вывода при оперировании с величинами (напр., «если две величины равны третьей, они равны между собой»).

Предлагаем вам познакомиться с таким великим математиком, как Евклид. Биография, краткое содержание основного его труда и некоторые интересные факты об этом ученом представлены в нашей статье. Евклид (годы жизни – 365-300 до н. э.) – математик, относящийся к эллинской эпохе. Он работал в Александрии при Птолемее I Сотере. Существует две основных версии того, где он родился. Согласно первой – в Афинах, согласно второй – в Тире (Сирия).

Биография Евклида: интересные факты

image

О жизни этого ученого известно не так много. Имеется сообщение, принадлежащее Паппу Александрийскому. Этот человек был математиком, жившим во 2-й половине 3 века нашей эры. Он отметил, что интересующий нас ученый был любезен и мягок со всеми теми, кто хоть как-то мог способствовать развитию тех или иных математических наук.

Существует также легенда, которую сообщил Архимед. Ее главный герой – Евклид. Краткая биография для детей обычно включает эту легенду, так как она весьма любопытна и способна вызвать интерес к этому математику у юных читателей. В ней говорится о том, что царь Птолемей захотел изучить геометрию. Однако выяснилось, что сделать это непросто. Тогда царь призвал ученого Евклида и спросил у него, есть ли какой-либо легкий путь к постижению этой науки. Но Евклид ответил, что царской дороги к геометрии нет. Так это выражение, ставшее крылатым, дошло до нас в виде легенды.

image

В начале 3 века до н. э. основал Александрийский музей и Александрийскую библиотеку Евклид. Краткая биография и его открытия связаны с двумя этими заведениями, которые одновременно являлись и учебными центрами.

Евклид – ученик Платона

Этот ученый прошел через Академию, основанную Платоном (портрет его представлен ниже). Он усвоил главную философскую идею этого мыслителя, которая заключалась в том, что существует самостоятельный мир идей. Можно с уверенностью сказать, что Евклид, биография которого скупа подробностями, был платоником в философии. Такая установка укрепляла ученого в понимании того, что все то, что создано и изложено им в его “Началах”, имеет вечное существование.

image

Интересующий нас мыслитель родился на 205 лет позже Пифагора, на 63 года – Платона, на 33 – Евдокса, на 19 – Аристотеля. Он познакомился с их философскими и математическими трудами либо самостоятельно, либо через посредников.

Связь “Начал” Евклида с трудами других ученых

Прокл Диадох, философ-неоплатоник (годы жизни – 412-485), автор комментариев к “Началам”, высказал мысль о том, что в этом сочинении отражены космология Платона и “Пифагорейская доктрина…”. В своем труде Евклид изложил теорию золотого сечения (книги 2-я, 6-я и 13-я) и правильных многогранников (книга 13-я). Являясь приверженцем платонизма, ученый понимал, что его “Начала” вносят вклад в космологию Платона и в представления, развитые его предшественниками, о числовой гармонии, которой характеризуется мироздание.

Не один Прокл Диадох ценил платоновы тела и золотое сечение. Иоганн Кеплер (годы жизни – 1571-1630) также интересовался ими. Этот немецкий астроном отметил, что в геометрии есть 2 сокровища – это золотое сечение (деление отрезка в среднем и крайнем отношении) и теорема Пифагора. Ценность последнего из них он сравнил с золотом, а первого – с драгоценным камнем. Иоганн Кеплер использовал платоновы тела в создании своей космологической гипотезы.

Значение “Начал”

image

Книга “Начала” – это основное сочинение, которое создал Евклид. Биография этого ученого, конечно, отмечена и другими работами, о которых мы расскажем в конце статьи. Следует заметить, что труды с названием “Начала”, в которых изложены все важнейшие факты теоретической арифметики и геометрии, составлялись и его предшественниками. Один из них – Гиппократ Хиосский, математик, живший в 5 веке до н. э. Февдий (2-я половина 4 века до н. э.) и Леонт (4 век до н. э.) также написали книги с таким названием. Однако с появлением евклидовых “Начал” все эти труды оказались вытесненными из обихода. Книга Евклида была базовым учебным пособием по геометрии на протяжении более 2 тысяч лет. Ученый, создавая свой труд, использовал многие достижения его предшественников. Евклид обработал имеющуюся информацию и свел материал воедино.

В своей книге автор подвел итог развитию математики в Древней Греции и создал прочный фундамент для дальнейших открытий. В этом и состоит значение главного труда Евклида для мировой философии, математики и всей науки в целом. Неверно было бы полагать, что оно заключается в укреплении мистики Платона и Пифагора в их псевдомироздании.

Многие ученые оценили “Начала” Евклида, в том числе и Альберт Эйнштейн. Он отметил, что это удивительное произведение, давшее разуму человека уверенность в себе, необходимую для дальнейшей деятельности. Эйнштейн сказал, что тот человек, который не восхищался в молодости этим творением, не рожден для теоретических изысканий.

Аксиоматический метод

Следует отдельно отметить значение труда интересующего нас ученого в блестящей демонстрации аксиоматического метода в его “Началах”. Этот метод в современной математике является самым серьезным из тех, которые используются для обоснования теорий. В механике он также находит широкое применение. Великий ученый Ньютон построил “Начала натуральной философии” по образцу труда, который создал Евклид.

Биография интересующего нас автора продолжается описанием основных положений его главного труда.

Основные положения “Начал”

image

В книге “Начала” систематически изложена евклидова геометрия. Ее система координат опирается на такие понятия, как плоскость, прямая, точка, движение. Отношения, которые используются в ней, следующие: “точка расположена на прямой, лежащей на плоскости” и “точка расположена между двумя другими точками”.

Систему положений евклидовой геометрии, представленную в современном изложении, разбивают обычно на 5 групп аксиом: движения, порядка, непрерывности, сочетания и параллельности Евклида.

image

В тринадцати книгах “Начал” ученый представил и арифметику, стереометрию, планиметрию, отношения по Евдоксу. Следует отметить, что изложение в этом труде строго дедуктивно. Определениями начинается каждая книга Евклида, а в первой из них за ними следуют аксиомы и постулаты. Далее идут предложения, делящиеся на задачи (где необходимо что-либо построить) и теоремы (где нужно что-либо доказать).

Недостаток математики Евклида

Основной недостаток заключается в том, что аксиоматика этого ученого лишена полноты. Отсутствуют аксиомы движения, непрерывности и порядка. Поэтому ученому нередко приходилось доверять глазу, прибегать к интуиции. Книги 14-я и 15-я – это более поздние добавления к труду, автор которого – Евклид. Биография его имеется лишь очень краткая, поэтому нельзя точно сказать, были ли первые 13 книг созданы одним человеком или же являются плодом коллективного труда школы, которой руководил ученый.

Дальнейшее развитие науки

Появление евклидовой геометрии связано с возникновением наглядных представлений о мире, окружающем нас (лучи света, натянутые нити как иллюстрация прямых линий и т. п.). Далее они углублялись, благодаря чему возникло более абстрактное понимание такой науки, как геометрия. Н. И. Лобачевский (годы жизни – 1792-1856) – российский математик, сделавший важное открытие. Он отметил, что существует геометрия, которая отличается от евклидовой. Это изменило представления ученых о пространстве. Оказалось, что они отнюдь не априорны. Другими словами, геометрия, изложенная в “Началах” Евклида, не может считаться единственной описывающей свойства пространства, окружающего нас. Развитие естествознания (в первую очередь астрономии и физики) показало, что она описывает его структуру только с определенной точностью. Кроме того, ее нельзя применять для всего пространства в целом. Евклидова геометрия – это первое приближение к пониманию и описанию его структуры.

К слову сказать, судьба Лобачевского оказалась трагической. Он не был принят в научном мире за свои смелые мысли. Однако и борьба этого ученого не была напрасной. Торжество идей Лобачевского обеспечил Гаусс, переписка которого была опубликована в 1860 годы. В числе писем были и восторженные отзывы ученого о геометрии Лобачевского.

Другие труды Евклида

image

Очень большой интерес и в наше время представляет биография Евклида как ученого. В математике он сделал важные открытия. Это подтверждается тем, что с 1482 года книга “Начала” выдержала уже более пятисот изданий на различных языках мира. Однако биография математика Евклида отмечена созданием не только этой книги. Ему принадлежит ряд трудов по оптике, астрономии, логике, музыке. Один из них – книга “Данные”, в которой описаны те условия, которые дают возможность считать “данным” тот или иной математический максимальный образ. Другой труд Евклида – книга по оптике, в которой содержатся сведения о перспективе. Интересующий нас ученый написал сочинение и по катоптрике (он изложил в этом труде теорию искажений, возникающих в зеркалах). Известна и книга Евклида под названием “Деление фигур”. Работа по математике “О ложных заключениях”, к сожалению, не сохранилась.

Итак, вы познакомились с таким великим ученым, как Евклид. Краткая биография его, надеемся, оказалась вам полезной.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий